Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A PP2A-B55-Mediated Crosstalk between TORC1 and TORC2 Regulates the Differentiation Response in Fission Yeast.

Identifieur interne : 000940 ( Main/Exploration ); précédent : 000939; suivant : 000941

A PP2A-B55-Mediated Crosstalk between TORC1 and TORC2 Regulates the Differentiation Response in Fission Yeast.

Auteurs : Ruth Martín [Norvège] ; Marina Portantier [Norvège] ; Nathalia Chica [Norvège] ; Mari Nyquist-Andersen [Norvège] ; Juan Mata [Royaume-Uni] ; Sandra Lopez-Aviles [Norvège]

Source :

RBID : pubmed:28041796

Descripteurs français

English descriptors

Abstract

Extracellular cues regulate cell fate, and this is mainly achieved through the engagement of specific transcriptional programs. The TORC1 and TORC2 complexes mediate the integration of nutritional cues to cellular behavior, but their interplay is poorly understood. Here, we use fission yeast to investigate how phosphatase activity participates in this interplay during the switch from proliferation to sexual differentiation. We find that loss of PP2A-B55Pab1 enhances the expression of differentiation-specific genes and leads to premature conjugation. pab1 deletion brings about a transcriptional profile similar to TORC1 inactivation, and deletion of pab1 overcomes the repression of differentiation genes in cells overexpressing TORC1. Importantly, we show that this effect is mediated by an increased TORC2-AKT (Gad8) signaling. Under nutrient-rich conditions, PP2A-B55Pab1 dephosphorylates Gad8 Ser546, repressing its activity. Conversely, TORC1 inactivation upon starvation leads to the inactivation of PP2A-B55Pab1 through the Greatwall-Endosulfin pathway. This results in the activation of Gad8 and the commitment to differentiation. Thus, PP2A-B55Pab1 enables a crosstalk between the two TOR complexes that controls cell-fate decisions in response to nutrient availability.

DOI: 10.1016/j.cub.2016.11.037
PubMed: 28041796
PubMed Central: PMC5266790


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A PP2A-B55-Mediated Crosstalk between TORC1 and TORC2 Regulates the Differentiation Response in Fission Yeast.</title>
<author>
<name sortKey="Martin, Ruth" sort="Martin, Ruth" uniqKey="Martin R" first="Ruth" last="Martín">Ruth Martín</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Biotechnology Centre of Oslo, University of Oslo, Gaustadalléen 21, Oslo 0349, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>The Biotechnology Centre of Oslo, University of Oslo, Gaustadalléen 21, Oslo 0349</wicri:regionArea>
<placeName>
<settlement type="city">Oslo</settlement>
<region nuts="2">Østlandet</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Portantier, Marina" sort="Portantier, Marina" uniqKey="Portantier M" first="Marina" last="Portantier">Marina Portantier</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Biotechnology Centre of Oslo, University of Oslo, Gaustadalléen 21, Oslo 0349, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>The Biotechnology Centre of Oslo, University of Oslo, Gaustadalléen 21, Oslo 0349</wicri:regionArea>
<placeName>
<settlement type="city">Oslo</settlement>
<region nuts="2">Østlandet</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chica, Nathalia" sort="Chica, Nathalia" uniqKey="Chica N" first="Nathalia" last="Chica">Nathalia Chica</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Biotechnology Centre of Oslo, University of Oslo, Gaustadalléen 21, Oslo 0349, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>The Biotechnology Centre of Oslo, University of Oslo, Gaustadalléen 21, Oslo 0349</wicri:regionArea>
<placeName>
<settlement type="city">Oslo</settlement>
<region nuts="2">Østlandet</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nyquist Andersen, Mari" sort="Nyquist Andersen, Mari" uniqKey="Nyquist Andersen M" first="Mari" last="Nyquist-Andersen">Mari Nyquist-Andersen</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Biotechnology Centre of Oslo, University of Oslo, Gaustadalléen 21, Oslo 0349, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>The Biotechnology Centre of Oslo, University of Oslo, Gaustadalléen 21, Oslo 0349</wicri:regionArea>
<placeName>
<settlement type="city">Oslo</settlement>
<region nuts="2">Østlandet</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mata, Juan" sort="Mata, Juan" uniqKey="Mata J" first="Juan" last="Mata">Juan Mata</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, University of Cambridge, Building O, Downing Site, Cambridge CB2 1QW, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Biochemistry, University of Cambridge, Building O, Downing Site, Cambridge CB2 1QW</wicri:regionArea>
<orgName type="university">Université de Cambridge</orgName>
<placeName>
<settlement type="city">Cambridge</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Angleterre de l'Est</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lopez Aviles, Sandra" sort="Lopez Aviles, Sandra" uniqKey="Lopez Aviles S" first="Sandra" last="Lopez-Aviles">Sandra Lopez-Aviles</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Biotechnology Centre of Oslo, University of Oslo, Gaustadalléen 21, Oslo 0349, Norway. Electronic address: sandra.lopez-aviles@biotek.uio.no.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>The Biotechnology Centre of Oslo, University of Oslo, Gaustadalléen 21, Oslo 0349</wicri:regionArea>
<placeName>
<settlement type="city">Oslo</settlement>
<region nuts="2">Østlandet</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28041796</idno>
<idno type="pmid">28041796</idno>
<idno type="doi">10.1016/j.cub.2016.11.037</idno>
<idno type="pmc">PMC5266790</idno>
<idno type="wicri:Area/Main/Corpus">000907</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000907</idno>
<idno type="wicri:Area/Main/Curation">000907</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000907</idno>
<idno type="wicri:Area/Main/Exploration">000907</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A PP2A-B55-Mediated Crosstalk between TORC1 and TORC2 Regulates the Differentiation Response in Fission Yeast.</title>
<author>
<name sortKey="Martin, Ruth" sort="Martin, Ruth" uniqKey="Martin R" first="Ruth" last="Martín">Ruth Martín</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Biotechnology Centre of Oslo, University of Oslo, Gaustadalléen 21, Oslo 0349, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>The Biotechnology Centre of Oslo, University of Oslo, Gaustadalléen 21, Oslo 0349</wicri:regionArea>
<placeName>
<settlement type="city">Oslo</settlement>
<region nuts="2">Østlandet</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Portantier, Marina" sort="Portantier, Marina" uniqKey="Portantier M" first="Marina" last="Portantier">Marina Portantier</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Biotechnology Centre of Oslo, University of Oslo, Gaustadalléen 21, Oslo 0349, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>The Biotechnology Centre of Oslo, University of Oslo, Gaustadalléen 21, Oslo 0349</wicri:regionArea>
<placeName>
<settlement type="city">Oslo</settlement>
<region nuts="2">Østlandet</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chica, Nathalia" sort="Chica, Nathalia" uniqKey="Chica N" first="Nathalia" last="Chica">Nathalia Chica</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Biotechnology Centre of Oslo, University of Oslo, Gaustadalléen 21, Oslo 0349, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>The Biotechnology Centre of Oslo, University of Oslo, Gaustadalléen 21, Oslo 0349</wicri:regionArea>
<placeName>
<settlement type="city">Oslo</settlement>
<region nuts="2">Østlandet</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nyquist Andersen, Mari" sort="Nyquist Andersen, Mari" uniqKey="Nyquist Andersen M" first="Mari" last="Nyquist-Andersen">Mari Nyquist-Andersen</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Biotechnology Centre of Oslo, University of Oslo, Gaustadalléen 21, Oslo 0349, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>The Biotechnology Centre of Oslo, University of Oslo, Gaustadalléen 21, Oslo 0349</wicri:regionArea>
<placeName>
<settlement type="city">Oslo</settlement>
<region nuts="2">Østlandet</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mata, Juan" sort="Mata, Juan" uniqKey="Mata J" first="Juan" last="Mata">Juan Mata</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, University of Cambridge, Building O, Downing Site, Cambridge CB2 1QW, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Biochemistry, University of Cambridge, Building O, Downing Site, Cambridge CB2 1QW</wicri:regionArea>
<orgName type="university">Université de Cambridge</orgName>
<placeName>
<settlement type="city">Cambridge</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Angleterre de l'Est</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lopez Aviles, Sandra" sort="Lopez Aviles, Sandra" uniqKey="Lopez Aviles S" first="Sandra" last="Lopez-Aviles">Sandra Lopez-Aviles</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Biotechnology Centre of Oslo, University of Oslo, Gaustadalléen 21, Oslo 0349, Norway. Electronic address: sandra.lopez-aviles@biotek.uio.no.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>The Biotechnology Centre of Oslo, University of Oslo, Gaustadalléen 21, Oslo 0349</wicri:regionArea>
<placeName>
<settlement type="city">Oslo</settlement>
<region nuts="2">Østlandet</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Current biology : CB</title>
<idno type="eISSN">1879-0445</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Mechanistic Target of Rapamycin Complex 1 (genetics)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (metabolism)</term>
<term>Mechanistic Target of Rapamycin Complex 2 (genetics)</term>
<term>Mechanistic Target of Rapamycin Complex 2 (metabolism)</term>
<term>Multiprotein Complexes (genetics)</term>
<term>Multiprotein Complexes (metabolism)</term>
<term>Nitrogen (metabolism)</term>
<term>Phosphorylation (MeSH)</term>
<term>Schizosaccharomyces (cytology)</term>
<term>Schizosaccharomyces (genetics)</term>
<term>Schizosaccharomyces (growth & development)</term>
<term>Schizosaccharomyces (metabolism)</term>
<term>Schizosaccharomyces pombe Proteins (genetics)</term>
<term>Schizosaccharomyces pombe Proteins (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Azote (métabolisme)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (génétique)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (métabolisme)</term>
<term>Complexe-2 cible mécanistique de la rapamycine (génétique)</term>
<term>Complexe-2 cible mécanistique de la rapamycine (métabolisme)</term>
<term>Complexes multiprotéiques (génétique)</term>
<term>Complexes multiprotéiques (métabolisme)</term>
<term>Phosphorylation (MeSH)</term>
<term>Protéines de Schizosaccharomyces pombe (génétique)</term>
<term>Protéines de Schizosaccharomyces pombe (métabolisme)</term>
<term>Schizosaccharomyces (croissance et développement)</term>
<term>Schizosaccharomyces (cytologie)</term>
<term>Schizosaccharomyces (génétique)</term>
<term>Schizosaccharomyces (métabolisme)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Mechanistic Target of Rapamycin Complex 1</term>
<term>Mechanistic Target of Rapamycin Complex 2</term>
<term>Multiprotein Complexes</term>
<term>Schizosaccharomyces pombe Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Mechanistic Target of Rapamycin Complex 1</term>
<term>Mechanistic Target of Rapamycin Complex 2</term>
<term>Multiprotein Complexes</term>
<term>Nitrogen</term>
<term>Schizosaccharomyces pombe Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Complexe-2 cible mécanistique de la rapamycine</term>
<term>Complexes multiprotéiques</term>
<term>Protéines de Schizosaccharomyces pombe</term>
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Azote</term>
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Complexe-2 cible mécanistique de la rapamycine</term>
<term>Complexes multiprotéiques</term>
<term>Protéines de Schizosaccharomyces pombe</term>
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Phosphorylation</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Phosphorylation</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Extracellular cues regulate cell fate, and this is mainly achieved through the engagement of specific transcriptional programs. The TORC1 and TORC2 complexes mediate the integration of nutritional cues to cellular behavior, but their interplay is poorly understood. Here, we use fission yeast to investigate how phosphatase activity participates in this interplay during the switch from proliferation to sexual differentiation. We find that loss of PP2A-B55
<sup>Pab1</sup>
enhances the expression of differentiation-specific genes and leads to premature conjugation. pab1 deletion brings about a transcriptional profile similar to TORC1 inactivation, and deletion of pab1 overcomes the repression of differentiation genes in cells overexpressing TORC1. Importantly, we show that this effect is mediated by an increased TORC2-AKT (Gad8) signaling. Under nutrient-rich conditions, PP2A-B55
<sup>Pab1</sup>
dephosphorylates Gad8 Ser546, repressing its activity. Conversely, TORC1 inactivation upon starvation leads to the inactivation of PP2A-B55
<sup>Pab1</sup>
through the Greatwall-Endosulfin pathway. This results in the activation of Gad8 and the commitment to differentiation. Thus, PP2A-B55
<sup>Pab1</sup>
enables a crosstalk between the two TOR complexes that controls cell-fate decisions in response to nutrient availability.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28041796</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>05</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1879-0445</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>27</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2017</Year>
<Month>Jan</Month>
<Day>23</Day>
</PubDate>
</JournalIssue>
<Title>Current biology : CB</Title>
<ISOAbbreviation>Curr Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>A PP2A-B55-Mediated Crosstalk between TORC1 and TORC2 Regulates the Differentiation Response in Fission Yeast.</ArticleTitle>
<Pagination>
<MedlinePgn>175-188</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0960-9822(16)31390-2</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.cub.2016.11.037</ELocationID>
<Abstract>
<AbstractText>Extracellular cues regulate cell fate, and this is mainly achieved through the engagement of specific transcriptional programs. The TORC1 and TORC2 complexes mediate the integration of nutritional cues to cellular behavior, but their interplay is poorly understood. Here, we use fission yeast to investigate how phosphatase activity participates in this interplay during the switch from proliferation to sexual differentiation. We find that loss of PP2A-B55
<sup>Pab1</sup>
enhances the expression of differentiation-specific genes and leads to premature conjugation. pab1 deletion brings about a transcriptional profile similar to TORC1 inactivation, and deletion of pab1 overcomes the repression of differentiation genes in cells overexpressing TORC1. Importantly, we show that this effect is mediated by an increased TORC2-AKT (Gad8) signaling. Under nutrient-rich conditions, PP2A-B55
<sup>Pab1</sup>
dephosphorylates Gad8 Ser546, repressing its activity. Conversely, TORC1 inactivation upon starvation leads to the inactivation of PP2A-B55
<sup>Pab1</sup>
through the Greatwall-Endosulfin pathway. This results in the activation of Gad8 and the commitment to differentiation. Thus, PP2A-B55
<sup>Pab1</sup>
enables a crosstalk between the two TOR complexes that controls cell-fate decisions in response to nutrient availability.</AbstractText>
<CopyrightInformation>Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Martín</LastName>
<ForeName>Ruth</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>The Biotechnology Centre of Oslo, University of Oslo, Gaustadalléen 21, Oslo 0349, Norway.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Portantier</LastName>
<ForeName>Marina</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>The Biotechnology Centre of Oslo, University of Oslo, Gaustadalléen 21, Oslo 0349, Norway.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chica</LastName>
<ForeName>Nathalia</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>The Biotechnology Centre of Oslo, University of Oslo, Gaustadalléen 21, Oslo 0349, Norway.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nyquist-Andersen</LastName>
<ForeName>Mari</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>The Biotechnology Centre of Oslo, University of Oslo, Gaustadalléen 21, Oslo 0349, Norway.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mata</LastName>
<ForeName>Juan</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, University of Cambridge, Building O, Downing Site, Cambridge CB2 1QW, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lopez-Aviles</LastName>
<ForeName>Sandra</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>The Biotechnology Centre of Oslo, University of Oslo, Gaustadalléen 21, Oslo 0349, Norway. Electronic address: sandra.lopez-aviles@biotek.uio.no.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>12</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Curr Biol</MedlineTA>
<NlmUniqueID>9107782</NlmUniqueID>
<ISSNLinking>0960-9822</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029702">Schizosaccharomyces pombe Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076225">Mechanistic Target of Rapamycin Complex 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076225" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 2</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012568" MajorTopicYN="N">Schizosaccharomyces</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029702" MajorTopicYN="N">Schizosaccharomyces pombe Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">B55</Keyword>
<Keyword MajorTopicYN="N">Gad8</Keyword>
<Keyword MajorTopicYN="N">PP2A</Keyword>
<Keyword MajorTopicYN="N">S. pombe</Keyword>
<Keyword MajorTopicYN="N">TORC1</Keyword>
<Keyword MajorTopicYN="N">TORC2</Keyword>
<Keyword MajorTopicYN="N">nitrogen starvation</Keyword>
<Keyword MajorTopicYN="N">sexual differentiation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>02</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>09</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>11</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>1</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>5</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>1</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28041796</ArticleId>
<ArticleId IdType="pii">S0960-9822(16)31390-2</ArticleId>
<ArticleId IdType="doi">10.1016/j.cub.2016.11.037</ArticleId>
<ArticleId IdType="pmc">PMC5266790</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 2003 Jun 16;22(12):3073-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2009 Aug;29(16):4584-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19546237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Aug 1;289(31):21727-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24928510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 Nov 1;119(Pt 21):4475-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17046992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2010 Nov 23;20(22):1975-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21035342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2014 May;15(5):457-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24705297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2010 Mar 1;123(Pt 5):777-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20144990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2015 Nov 27;4:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26613407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Mar;175(3):1153-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17179073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2013 Sep 1;126(Pt 17):3972-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23813957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 9;276(10):7027-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11096119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2013 Nov 25;203(4):595-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24247430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2013 Jan 31;3(1):16-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23273919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1993 Jun;7(6):1059-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8389306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1997 Jan;17(1):10-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8972180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2004 Aug;36(8):809-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15195092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2016 Feb 8;26(3):319-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26776736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Oct 17;103(42):15517-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17032641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 Jan;19(1):284-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17989363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 May 28;459(7246):592-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19387440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2002 Jul;161(3):1053-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12136010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Sep 10;6:8256</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26356805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Dec 17;330(6011):1670-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21164013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Apr;27(8):3154-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17261596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Cell Biol. 2011 Feb 11;12 :8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21314938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Immunol. 2012 Jun;42(6):1639-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22678916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2013 Dec;41(6):1673-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24256273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2015;14(6):848-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25590601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2013 Jun 15;452(3):499-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23581296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2013 Apr 25;50(2):273-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23499004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 10;124(3):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Open Biol. 2011 Nov;1(3):110007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22645648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Apr 25;496(7446):513-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23467085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Dec 17;330(6011):1673-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21164014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2014 Jun 26;10(6):e1004456</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24968058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Apr 13;149(2):274-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22500797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2008 Feb 1;7(3):358-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18235227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2008 Nov 15;22(22):3184-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19056896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Apr 18;486(7403):346-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22522925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2006 Dec;11(12):1367-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17121544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Aug 1;17(15):1829-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12869586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2013 Jun;15(6):555-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23728461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1991;194:795-823</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2005825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1991 Nov;5(11):1990-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1657709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2009;521:449-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19563122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Endocrinol. 2010 Feb;24(2):370-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19965929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2009 Sep 16;28(18):2777-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19696736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Jul 5;288(27):19649-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23703609</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Norvège</li>
<li>Royaume-Uni</li>
</country>
<region>
<li>Angleterre</li>
<li>Angleterre de l'Est</li>
<li>Østlandet</li>
</region>
<settlement>
<li>Cambridge</li>
<li>Oslo</li>
</settlement>
<orgName>
<li>Université de Cambridge</li>
</orgName>
</list>
<tree>
<country name="Norvège">
<region name="Østlandet">
<name sortKey="Martin, Ruth" sort="Martin, Ruth" uniqKey="Martin R" first="Ruth" last="Martín">Ruth Martín</name>
</region>
<name sortKey="Chica, Nathalia" sort="Chica, Nathalia" uniqKey="Chica N" first="Nathalia" last="Chica">Nathalia Chica</name>
<name sortKey="Lopez Aviles, Sandra" sort="Lopez Aviles, Sandra" uniqKey="Lopez Aviles S" first="Sandra" last="Lopez-Aviles">Sandra Lopez-Aviles</name>
<name sortKey="Nyquist Andersen, Mari" sort="Nyquist Andersen, Mari" uniqKey="Nyquist Andersen M" first="Mari" last="Nyquist-Andersen">Mari Nyquist-Andersen</name>
<name sortKey="Portantier, Marina" sort="Portantier, Marina" uniqKey="Portantier M" first="Marina" last="Portantier">Marina Portantier</name>
</country>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Mata, Juan" sort="Mata, Juan" uniqKey="Mata J" first="Juan" last="Mata">Juan Mata</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000940 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000940 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28041796
   |texte=   A PP2A-B55-Mediated Crosstalk between TORC1 and TORC2 Regulates the Differentiation Response in Fission Yeast.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28041796" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020